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We give a rigorous proof of power-law falloff in the Kosterlitz-Thouless phase 
of a two-dimensional Coulomb gas in the sense that there exists a critical 
inverse temperature fl and a constant O > 0 such that for all /~> fl and all 
external charges ~ ~ R we have G~(x)<~ C/[x[ ~ where Ge(x) is the two-point 
external charges correlation function, r/=dist(~, Z), and C =  C(fl, 0 ) <  o~ for 
f/=dist(~, Z - { 0 } ) > 0 .  In the case of a hard-core or standard Coulomb gas 
with activity z, we may choose fl = fl(z) such that fl(z)~ 24~ as z ~,0. 

KEY W O R D S :  Coulomb gas; Kosterlitz-Thouless phase. 

1. I N T R O D U C T I O N  

A two-dimensional (lattice) Coulomb gas is a system of classical particles 
with electric charges + 1, whose possible positions range over a finite array 
of sites A c Z 2, interacting via a two-body Coulomb potential. 

A configuration of the gas is given by a function qA = {q(X)}x~A with 
values in Z, q(x) being the total charge concentrated at x. To each 
configuration we associate a Boltzmann factor 6 ~E~A~, where /3 is the 
inverse temperature and E(qA) is the total electrostatic energy, 

E ( q A ) =  ( - - A )  qA)  �89 1 

where A is the finite-difference Laplacian on Z 2 (we take "free" boundary 
conditions) and qA was extended to Z 2 by q(x)= 0 for x r A. 
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The equilibrium state of the system is defined by the usual Gibbs 
measure d#A on the space of all configurations on A, given by 

where 

d#A(qA)= ZA le-flE(qA) H d2(q(x)) 
x E A  

= f e-~E(q~) H ZA d2(q(x)) 
x ~ A  

is the partition function. Here d2, the "a priory distribution, is a positive 
(not necessarily finite) measure on Z. 

Notice that the measure d#A is concentrated on the neutral configura- 
tions, i.e., Zx~A q(x) =0,  since E(qA)= oo if qA is not neutral. 

A thermodynamic limit as A ~ Z 2 can always be constructed by a com- 
pactness argument. 

The usual "a priori" distribution d2 have densities 2 given by: 

1. The hard-core gas: 

i q = 0  2(q)= 2 q =  +1 

otherwise 

where z > 0 is called the activity. 

2. The standard gas: 

1 f~  eZCOSO 2(q) = ~ cos qO dO, q ~ Z 

with activity z > 0. 

3. The Villain gas: 

2(q)= 1 for all q ~ Z  

More generally, we will always require A to satisfy: 

(a) 2(q) = 2 ( -q ) .  

(b) 12(q)] ~ Ce vqz for some v >/0. 

Such 2 will be called typical. 
We will be interested in the behavior of the external charges correla- 

tion function defined by 

Gr = Zr 
ZA 



2D Lat t ice Coulomb Gas 139 

where 

Ze-'A(x)=f e ee(~+~(ao-a~l~ [I d2(q(y)) 
y~A  

and ~ e R. By Ge_(x) we will denote a thermodynamic limit. 
Using Jensen's inequality in the q variables, it is not hard to see that (~1 

G~(x) >1 Ce'~ 

for some 0 < Ce,~ < oo. 
When screening occurs (e,g., at high temperature) 

Federbush (2) and Yong (9/have shown that 

(1.1) 

Brydges and 

G~(x)--*L>O as x ~ o o  

exponentially fast. 
Fr6hlich and Spencer (3~ established the existence of a Kostertitz- 

Thouless transition from a high-temperature phase to a low-temperature 
phase characterized by scaling and power-law falloff of correlations. They 
proved that, for/3 sufficiently large, Debye screening does not occur and 

C 
G~(x) <~ ixje---= (1.2) 

where 3' =/3'(/3, ~), with limp ~ ~ fl' = co. 
Fr6hlich and Spencer reduced the study of a general Coulomb gas to 

the study of the hard-core-type Coulomb gas. For such they proved that 
(see Section 5.1 in ref. 3) 

2 
Or(x) <~ (1.3) 

for fl > b/cq 2, where ~/= min(~, 1 - ~) and 0 < ~ < 1. 
In this article we prove a power-law falloff for Ge(x) with the same 

functional dependence on/3 and the fractional part of ~ as the lower bound 
(t . t ) .  The critical/3 above which we get power-law fatloff is independent of 
the external charges + ~. We also show that for the hard-core or standard 
Coulomb gas this critical/~ is at most 24~z in the low-activity limit. More 
precisely, we have: 

T h e o r e m  1.1. Suppose the a priori distribution 2 is typical. Then 
there exist fl = fi(2) < ov and O = O(2) > 0 such that for all/3 > fl we have 

C 
G ~(x) ~ Ixl~ 2 
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for some C=C(/3,0), where t /=d is t (~ ,Z)  and 0 = d i s t ( { , Z - { 0 } ) ,  
and Cy(fl)=sup~<,<_lC(~,O)<oo for any 7 > 0  and /3>fi, with 
lim~ ~ ~ C~(/3)= 1. 

T h e o r e m  1.2. For the hard-core or standard Coulomb gas with 
activity z, we may choose f i=  fi(z) in such a way that fi(z)--+ 24rc as z NO. 

Our proofs use ideas developed for the hierarchical model by 
Marchetti and Perez {4's) combined with the main ingredients of the 
Fr6hlich-Spencer proof. As in ref. 3, expectations in the two-dimensional 
Coulomb gas are written as convex combinations of expectations in diluted 
gases of neutral multipoles of variables sizes and falloff is extracted from 
charged multipoles by an analytic continuation argument. But our proof is 
organized in a different manner, so we avoid their combinatorial estimates 
involving many differents scales. In this we were influenced by the work of 
von Dreifus, (6) Spencer, (7) and yon Dreifus and Klein. (8) 

This paper is organized as follows. In Section 2 the partition function 
of a typical Coulomb gas is rewritten as a convex combination of regular 
partition functions (Theorem 2.3). This is the initial step which gives us the 
starting conditions for the inductive procedure presented in Section 3 (see 
Theorem 3.1). In Section 4 this inductive procedure is modified to treat the 
external charges partition function, from which we extract the power-law 
falloff (Theorem 4.3). We consider this the most important section in 
this work; here we use ideas from the hierarchical approximation. (5) In 
Section 5 we perform the cancellations necessary to show decay for the 
external charges correlation function. 

2. THE FIRST STEP 

Following ref. 3, we start by rewriting the Coulomb gas in the sine- 
Gordon representation. In this representation, 

ZA = f [I ,~(~b(x))d#e(~ ) (2.1) 
x a A  

where d#~ is the Gaussian measure with covar iance /3( -A)- I ,  and 

Similarly, 

~((J) = ~ e'q~2(q) 
q ~ Z  

Z~,A(X) = I ei~C'{a~ a.~) H ,~(~b(y)) d/.t/~(q~) (2.2) 
_pEA 
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oo oo Again following ref. 3, we choose {~e}q=l such that Zq=L ffq= 1, ~q 
depending on 2(q) in a way to be specified later. We write 

5~(~) = 1 + 2 ~ ~(q) cos(q~) 
q = l  

= ~ (~q(l +2~q~2(q) cos(q~b)) 
q = l  

Thus, 

1-[ i(~b(x)) = ~ ~q~ [ l  {1 + 2~q}~2(q(x)) cos[q(x) ~b(x))] } 
x~A qA xEA 

where ~ q A = I ~ x ~ A  ~q(x), the sum being over all configurations in A with 
values in N. 

We now need to introduce some notation. For x =  (xl, x2)e Z 2, we 
will write Ixl for tx l~=max( lx l l ,  Ix2[). By B(x, L) we will denote the 
square in Z 2 centered at x with side L, i.e., 

B(x, L ) =  {yeZ2;  l y - x l  <L/2}  

Now let A be a large square centered at the origin; we define 

and for y ~ A, we let 

/1 = A  c~3Z 2 

Bo(y) = ~(y, 3) 

Clearly A = U ~ / B o ( y ) .  Hence, for a fixed qA, 

[ I  {1 +z(q(x))cos[q(x)O(x)]} 
: t E A  

= 1-[ l~ {l+z(q(u))cos[q(u)~(u)]} 
v~A ueBo(y) 

where z(q) = 2~q t2(q). 
For fixed y ~ A we will write the above product as a convex combina- 

tion of similar factors corresponding to multipoles of variable size. For that 
we will need the following lemma, which extends a result of ref. 3. 

Lemma 2.1. Let I be an index set with N elements, and let z~>~0, 
r ~ R be given for each i ~ L Then, 

1-[( l+z~c~ ~ G[l+z~cos~(a)]  (2.3) 
i ~ l  a ~ f ( l )  
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where N(I)= {a: I-+ {0, 1, - 1 } ;  ~ not identically zero}, 

~(~)=Z ~ ,  
i e l  

and 
z~ = ~ (b,z~) I~'l (2.4) 

i ~ l  

where bz is a constant depending only on N such that 

N 
0 < bl ~< log 2 (2.5) 

and 

O<ca, E c ~ = l  

Lemma 2.1 is proved in Appendix A. 
So, let y e A; by the lemma, 

FI 
u E B 0 ( y )  

where 

{1 + z(q(u)) cosEq(u) ~b(u)] } = 
ay ~ ~ ( B o ( y ) )  

p~y(u) = ay(U) q(u) 

%[1  + z~y cos ~(P~v)] 

and 

u �9 B o ( y )  

E• 
]io~(u)l 

O<zo~<. 1-I 9 z(u) (2.6) 
u e B o ( y )  

Thus, Z A can be written as a convex combination of partition func- 
tions of the type 

ZA = f ]-I [1 + zy cos ~b(pv) ] d#~(~b) (2.7) 
yea 

where py: Bo(y) ~ Z, and 

I 9 2Z(p~(u))] 
O<zy<~ [ I  log2 ~ ,  (2.8) 

u ~ B o ( y ) :  
&,(u)  r 0 
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We now want to improve the estimate on the activity zy by extracting 
a self-energy term as in ref. 3, Lemma 4.2. Here we need a slight extension. 

kemrna  2.2. Let p: Z 2---, R with compact support and let G(~b) be 
a functional independent of {qt(x); x e supp p }. Then 

f [exp i~b(p)] G(~b) d/~lj(~) 

= e x p [ - ~ 6  ~ P ( x ) 2 ]  f [expi~(p)]G(p)dt~(q )) (2.9) 

where fi = p + �89 

The proof is the same as that of Lemma 5.3 in ref. 10 using the 
imaginary shift ~b ~ q~ + ilflp. Just use IIAIr = 8. 

We would like to apply Lemma 2.2 to each py in (2.7). We cannot do 
it directly because even if supp p~ ~ Bo(y ), supp tS~ c B(y, 5/'2), but not 
necessarily in Bo(y ). If we disregarded this technical problem, applying 
Lemma 2 to each py in (2.7) would give 

zA= I H [I 
yea 

with ~,, = z_~ exp[ - ~f i  52~ p.,(x)=]. 
But since #y and p /  could overlap, with y r y', we must do some 

contorsions. In each Bo(y) we pick u,. such that 

1 2 py(u) 2 
ue Bo(y) 

[recall IB0(y)l = 9]. 
Let us define the equivalence 

y ~  y' <=> [uy- u/I = 1 

and let Y1 ..... Y j  denote the distinct equivalence classes. Notice we always 
have I Y it = 1, 2, 3, or 4. For each Yi we use Lemma 2.1 for the py with 
Y e Yi, and we define 

Bo(Yi)= t.) Bo(y) 
),'e Yi 

The end result is that ZA can be expanded as a convex combination of 
expressions of the form 

f 1~ [ I  + z r c o s  ~b(pr)] d, up(~b) (2.10) 
Y 
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where supp p y c Bo(Y) and 

(4)4 [9 1 ,2,,, 
u e B0( Y): 
p r(u) ~ 0 

Now, if U y =  {uy, y e  Y}, we have d(Uy, Uy,)> 1 if Y r  Y'. We can 
now apply Lemma 2.2 to each py restricted to Uy in (2.10), obtaining 

I F  [ {1 +2vcos[~b(fiv) ] d~(~b)} (2.12) 
Y 

where 

{E 1 ]} 
-~y= exp - l ~ f l  ~ 10y(b/) 2 Zy (2.13) 

u 

and 

~y=py+  ~d(p,.I ~,.) 

Now, set 

sup I ,q, 1,:o(fl)= ~ ~ = , 2  t ~q e flq2/144 (2.14) 

It follows from (2.11) and (2.14) that 

iy<~Ko(fl) for all Y (2.15) 

Moreover, since )~ is typical, we have lim~ ~ ~ Ko(fl)= O. 
We will always pick fl such that Ko(fl)< 1. 
We now need some definitions. A charge density is a function 

p: Z 2 --+ R; p is said to be localized on a square B(y, L), or to be a charge 
in B( y, L ), if 

( 4 )  
s u p p p c B  y ,~L  =B(y,L) 

A weighted charge density is a pair (p, z), where p is a charge density 
with an activity z ~> 0. From now on all our charges will be weighted; we 
will write p also for the pair (p, z), and will use z(p) for the corresponding 
activity. Notice that (2.12) is written in terms of weighted charge densities 
whose activities satisfy the bound (2.15). 



2D Lattice Coulomb Gas 145 

In (2.12) our charges are localized on sets Bo(Y) that may have four 
different shapes. We will rectify this by going to a larger scale L~. 

So let L,  = 3 %  where nl is an integer />3, let A{I)=A c~L1Z2, and let 
BI(y) = B(y, L1). We pick a function F: { Y} ~ A ~1) such that 

F(Y) = y ~ Bo(Y) c/7~ (y) 

Now, for each y e A  ~3 we use Lemma 2.t to get 

1~ [1 + s  cos qS(fiy)] = ~ co[l+z(p~)cosfb(p~)] 
Y: F ( Y )  - -  v o~  ~ ( F - l ( y ) )  

where 0 < c~, Z,~ co = 1, and p ,  is localized on B,(y) with 

z(P~)~<\9 ~J log2  =-KI(L~,fl) (2.16) 

if K1(L1, fl) < 1. 
Thus, (2.12) can be rewritten as a convex combination of expressions 

of the form 

f [ I  [1 +Z(py)COS~(py)] d~/~(qS) (2.17) 
y ~ A  (1) 

w]here py is localized on Bl(y) and z(p~) <<. KI(L,,  fi). 
We have thus proven the following theorem. 

Theorem 2.3. Let L~ = 3 "~ with ni ~> 3. Then, if K~(L~, f l )<  l, the 
partition function of a two-dimensional Coulomb gas can always be 
written as a convex combination of partition functions of the form (2.17) 
with activities satisfying (2.16). 

Equations (2.16) and (2.17) will give us the initial conditions for the 
inductive procedure we describe in the next section. 

The external charges partition function (2.2) can be treated in a 
similar way with some modifications. We postpone it to Section 4. 

3. THE INDUCTIVE  PROCEDURE FOR THE 
PARTIT ION FUNCTION 

Let us fix ~ > 1 ,  n~>3;  we set L 1 = 3  ~' and, for k=1 ,2 ,3 , . . . ,  
Lk+ 1 = 3 "k+l, where nk+ 1 = [~nk]. 

We set A<~)=AmLkZ 2 and define Be(y)_~B(y, Le) for yeA~el; 
B~(y) = B(y, 4 ~L~). We will also need B~k'~(y)= Bk(y ) n Lk, Z 2 for k' ~<k. 

We will always take A to be a square centered at 0, say A = B(0, R), 
and we pick N such that LN_I<R<~LN. Notice that A~N~= {0}. 

822/60/i -2-10 
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Let us fix a scale k, a number t > 0 ,  and y e A  (k). A weighted charge 
density p = (p, z(p)) is (k, y, t)-admissible if: 

(i) p is localized on Bk(y). 
(ii) z(p)<~L~'. 

A collection Jg~(k,y.r ) of neutral weighted charge densities will be called 
a (k, y, r)-sparse neutral ensemble if: 

(i) For k = 1, J/i',y.r, = ~b. 

(ii) For k = 2, 3,..., we have 

~((k,Y,r)=[ U ~((k l, y',r)]t"){(p'Z) } 
y,~B(k l)(y) 

where (p,z) is localized on Bk_l(y' ) for some y'eB~ k 1)(y), with 
z~< [8/(log 2) 4] L~L 1 and each dV((k-l,y'r) is a ( k - 1 ,  y', r)-sparse neutral 
ensemble. 

Given ~/<<k, y,r), let 

r(~k,y,r),O)= [l [l+z(p)cosO(p)] 
P ~ JV(k,y,r) 

Given a scale k, a (k, r)-regular charge assignment is a collection 
{JV~(k,y,~), (py, Zy)}y~A<k~ where each Y(k,y,r)is a (k, y, r)-sparse neutral 
ensemble and each (py, Zy) is a [ k , ~ v , r + 2 ( ~ - l ) ] - a d m i s s i b l e  charge 
density. 

A (k, r)-regular partition function is a partition function of the form 

Z(g,~)=f E F(~((k,y,r);O)[lq-z(py)COSO(py)]dll[~(O) (3.1) 
yeA( k ) 

where {Jgik, y,r), (py, Zy)} is a (k, r)-regular charge assignment. 
In this language, Theorem 2.3 just states that for a choice of 

parameters such that KI(L1,/?)~<L~ ~r+2(~-1)), the partition function ZA 
given by (2.1) is a convex combination of (1, r)-regular partition functions. 

In other words, Theorem 2.3 gives the initial step in the inductive 
procedure of the following theorem. 

T h e o r e m  3.1. Let 3 /2<c~<2,  2 , ( , - 1 ) / ( 2 - , ) < r < f 1 6 / 2 - 2 ~ ,  
with ~-1 = 8 + O(L~ 2=). Suppose g l ( Z l ,  ~) < Z x  (r+2(" 1)). Then, if L, is 
large enough, the Coulomb gas partition function ZA can always be written 
as a convex combination of (k, r)-regular partition functions for any 
k = l ,  2 ..... N. 
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In view of Theorem 2.3, Theorem 3.1 follows from the following result. 

I . emma  3.2. Let ~, r, L~ be as above. Let k = l ,  2 ..... N - 1 .  Then, 
if L~ is large enough, any (k, r)-regular partition function can be written as 
a convex combination of (k + 1, r)-regular partition functions. 

Proof. Let k ~ { 1 , 2  ..... N - l }  and let {#U(k,y,r),(py, Zy)}yeAIk)be a 
(k, r)-regular charge assignment. Let Z(~,~ / be given by (3.1). 

Given u E A (~+ ~), we define 

y s B(kk+ ) l (u)  

Clearly, ~ k +  ~ .... ) is a (k+  1, u, r)-sparse neutral ensemble and 

u~A(k+l) yEA(k) 

Using Lemma 2.1, this can be written as a convex combination of 
partition functions of the form 

I 171 F(Y((k+, .... ); ~b) l~[ [1 + z* cos ~b(p*)] d/~(q~) (3.2) 
u~A(k+I) u~A(k+l) 

where each (p*, z*) is of the form 

A (k) Y k+l(u) 

for some aef~(A(k~l(u)) and 

(3.3) 

To propagate our bound on the activities to the next scale, we will 
need, in some cases, to extract a self-energy term as in refs. 3 and 10. This 
will be done by the following lemma (see Lemma 5.4 in ref. 10). 

k e m m a  3.3. Let {Y(k+l .... ), (p,*, Zu)}u~A~k-l~ be as above. Sup- 
pose that for some uo~A (k+~), p*o=pyo for some yoeB(k~l(Uo) and that 

B(yo, 1 ~Lk.  ~) c~ supp p* = ~b (3.4) 
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for all u ~ A(k + 1) U ~ //0" Then, if ~ > 3/2, we have, for given x > 0, 

where 

f e+-iC'(P~~ l-[ F(AT(k+ 1,<,-); r ~[ 
uEA (k+l) u~A(k+l) 

u~uo 

I1 +z.* cos r du~(r 

f +. -* 
= y(kl e_,r F(Y(~+I,.,,.,;~b) 

u ff A(t~+I) 

• [I [ l+~*cosr162 (3.5) 
u~A(k+l) 

u~uo 

( L,~+I~ -'~q2 y(~l~{L~+~ /%:q2( 1 -- ~:/2~i) 

-7-i7) < t, 3L~ ) 

with q-Q(p*)=~y~<u)P*(y), 6 - ~ = [ 6 ( e , L , ) ]  1 = 8 + O ( L ]  -2~) is 
independent of k and Pu0-* is a charge density localized on B(yo, �89 
such that Q(r Q(p*0). 3 

The lemma will be proved in Appendix B. 
Lemma 3.3 requires (3.4), which may not be true in the situation 

where we would like to use the lemma. To avoid this problem, we use 
Lemma2.1 to establish (3.4) for all p* of the form p*=py for some 

R(k) I(U) if it was not already satisfied. f l E C k +  
Clearly, that gives (3.2) as a convex combination of expressions of the 

same type, but with (3.4) holding, with 

p*=~ ~ypy forsome ~ ( B k + l ( u ) )  
Y 

and 

i(+)3(, z* <~ ~ / 7 ; J J  (3.6) 

We did not change the ~ + 1  .... ). 
We now consider several cases. 

(i) ~2y[Zyl>~2. In this case we define Jg~(k+l .... / = ~ k + l  .... / and 
notice that (3.6) gives 

1 
u /- r + 2(c~ 1) 

~ k + l  

if r > 2~(c~ - 1 )/(2 - c~) and L 1 is sufficiently large. 

3 T h e  p r o o f  of  L e m m a  3.3 c a n  be  s l ight ly  m o d i f i e d  to o b t a i n  6 a = 2 n + O ( L ~ - 2 ~ ) ;  see 

A p p e n d i x  B. 
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We define (p, ,  z , ) =  (p*, z*). 

(ii) Zy Izyl = 1. Here we must consider two subcases: 

(iia) Q ( p * ) = 0 .  We define dV((k+ , .... )=X((k+~ .... ) u { ( p * , z * ) }  and 
notice that it is a (k + 1, u, r)-sparse neutral ensemble by (3.6). 

(iib) Q ( p * ) r  We define Jff(~+l .... )=JV((K+I .... ). Now recall cos O =  
�89176176 and use Lemma 3.3 (here we choose ~ = 6) to replace (p*, z*) 
by (p,,  z,), where p~ = fi* and 

z~ ~< z* ~< r~+ 2(~- 1) 
~ k + l  

if r < fl6/2 - 2~ for L~ sufficiently large. 
This finishes the proof of Lemma 3.2 and hence also of Theorem 3.1. 

4. T H E  E X T E R N A L  C H A R G E S  P A R T I T I O N  F U N C T I O N  

We now show how to modify the procedure of Sections 2 and 3 to 
treat Zr ) given by (2.2). 

So, given x e Z  2, let us choose No such that LNo<Ixl<Luo+l. 
Without loss of generality, N0>  1. We want to prove the analogue of 
Theorem 3.1 for Z~,A(X). We start by showing the analogue of Theorem 2.3. 
Note that in the same way we obtain the analogue of (2.7), 

z ,J(x)=f I-[ [l +zyCOS( (py)]dlz ( o) (4.1) 
y ~  fl 

with the same (py, Zy). 
We must be careful, though, when we apply Lemma2.2. Since 

ix[ > L1/2, 0 and x do not belong to the same Bo(Y ). We have, of course, 
0 ~ Bo(Yo) and x E Bo(Yx) for some Yo, Yx E A. When we apply Lemma 2.2 
we must treat p r0 and p y~ differently from the others. If 0 ~ Yo and u o ~ 0, 
we do as before. If, however, Uo = 0, we must apply Lemma 2.2 to both 

exp[iO(Pro+ 4~o)] and exp[-i~(pro- 460)] 

The result is that [1 +zro cos ~b(py0)] is replaced by 

1 z+ + Zf2exp[i~b(p ~o)] + Zro [ ~ -  e x p -  1~b(p r0)] 

where [see (2.13)] 

P ;o = P ~'o + 4~o - ~ o  

P Yo = P Yo -- 460 + 460 
(4.2) 
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and 

z-+~<expl 1 1 y0 - ~ fl0 2 E p y0(x) 2 
x 

where the extra factor [-compare with (2.14)] comes from 

(q +_ 4) 2 >~ O 2 

for q~> 1, 0=  dist(r Z -  {0}). 
Thus, in any case, (2.12) is replaced by 

{ 2-Z~'Y . +y:.)] ZY~exp[_i(~(pry)] t _ 2 _  f {exp[i~b(6o- 6x)] } 1~ 1 + exp[t~b(p + 
y=O,x 

x l-I [1 + i t  cos ~b(fiv)] d#/~(~b) (4.3) 
Y,~ YO, Yx 

Jr,  P are as in (2.13) for Yr Yx, P~,  y = 0 ,  x, being either as before 
or given by (4.2). Notice that Q(p+)=  Q(p ). If we now define [recall 
(2.14)] 

K;(fl,  3) = Ko(flq 2) 

we always have that, for sufficient large fl, 

z-+to, zrx'~• -<K'o(fi, 4) (4.4) 

We now go to the bigger scale L1. We pick a function H: { Y} --+ a (*) 
such that: 

(i) H(Y)= y~Bo(Y)cBI(y ). 
(ii) H ( Y o ) = 0 a n d H ( Y x ) = x i ,  w h e r e x l e A  (l) andxeBl(xl). 

Now, for each yeA (~)- {0, x~}, we proceed as in Section2. For 
u~ = 0, xi we first apply Lemma 2.1 to 

~I [l+2rcosO(fir)]= ~ c~[l+z(po) cos~b(p~)] 
H:H(Y)=#I ~re~(H l(ul) { Yul }) 

Y~ Yu~ 

with z(po) satisfying (2.16). We then apply a slightly different version of 
Lemma 2.1 to each term of the type shown in the following lemma. 

k e m m a  4.1. Let (p, z), (p• z • be weighted densities localized on 
B(u), with z, z • ~>0 and Q(p+)=Q(p ). Then 

z ) [ l+zcoscb(p) ]  1+ ei~(P+)+~-e-i~(P ) 

(z: ) = ~ C~ l+~-eir e -io(pV) 
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where 

Y = { r = ( z ~ , z j : r , q { 0 , 1 , - 1 } , i : l , 2 a n d r 4  =(0,0)}, p f = z t p + z 2 p  + 

with Q(p~+ ) = Q(p ~ ) and 

Z+ = (b2z)l~ll (b2z• 

where 0 < b2 < 2/log 2 and 0 < c~, ~2~ ~ j c~ = 1. 
The result is that (4.3) is given as a convex combination of expressions 

of the form 

e,Z0(~0- ~x) ~=o,x~[I 1 + ~ -  e + 2 e 

x l-[ [1 + zy cos qt(py)] d/za(%) (4.5) 
y~A (1) {0, xl } 

where p), is localized on B~(y) for y �9 A ( ~ -  {0, x~ } with 

Z, ~< KI (L1 ,  fl) (4.5a) 

[see (2.16) for definition] and p~ is localized o n  BI(U), u = 0 ,  X 1 with 

z,f- <~ ,-7---'-;~,~ L~ K'o(fl, r K'I(LI, fi, ~) (4.5b) 

Notice that if K'j < 1, then K1 < 1. 
We have proved the following theorem analogous to Theorem 2.3. 

Theorem 4.2. Let L 1 = 3 n~ with n I/> 3. Then, if K'I < 1, the two- 
point external charges partition function Zr can always be written as 
a convex combination of partition functions of the form (4.5) with activities 
satisfying (4.5a) and (4.5b). 

Theorem 4.2 gives us the initial condition for the inductive procedure 
we describe below. 

Given y ~ A, let Yk e A (k) be such that y ~ Bk(Yk). 
We use this notation to distinguish those squares which contain the 

external charges. So, for k~<No, y = 0  or x, we have y ~ = 0  or xk with 
x e Bk(x~), and for k > No, y~ = 0. 

A collection C(k.,/, ..... ) of neutral weighted charge densities will be called 
a (k, Yk, r, s)-sparse modified neutral ensemble if: 

(i) For  k = 1, 41,).1 ...... ) =  ~. 



152 Marchett i  e t  al. 

(ii) F o r k = 2  ..... No, 

Y ~ B~k-  l)(y/:) 
u ~  Yk 1 

(iii) F o r k = N o + l  

u �9 B~O+) l(O) 
u ~ O ,  XN 0 

~ / i k - -  I . . . .  ) ~ ~ k - - 1 ,  y k _  1 . . . .  )k_J {(p--~,  Z ~ )}  

~((No . . . .  ) U ~-~(No, YN 0 . . . .  ) k") { ( P ~ '  Z--+)} 
YNo = O, XNo 

(iv) For  k > No + 1, we have as in (ii). 

Here (p +, z -+) is a weighted charge density localized on Bk_ ~(y~ t) 
with Q ( p + ) = Q ( p  ) and z +- <~23 .3 / ( log2)4 .Lk-21 .  The d~ 1, yk 1 . . . .  ) is a 
( k -  1, Yk- ~, r, s)-sparse modified neutral ensemble and each JV((k ~ .... ) is a 
( k -  1, u, r)-sparse neutral ensemble as introduced in Section 3. 

Given g(k,y~,r.s), we define the functional G as follows: 

(i) G ( C ( 1 ,  y 1 . . . .  ); ~b)= 1 for k = 1. 

(ii) We have 

G(g(k, yk .... ); ~b)= I ]  F(J/((k-t .... ); ~b) 
u e B ( k  k l ) ( yk )  

u ~  y k - I  

�9 l[z+eir z - e  g~(P-)]} x G(o~(k_l,yk_~ .... ), y ){ l  + 2 + 

for k < . N o  and for k > N 0 +  1. 

(iii) F o r k = N o + l  

= ~I F(Jff(No . . . .  );  ~)) 
u ~ B(NN0+ I 1(0) 

u v ~ O, XN 0 

VNo 0 XNo / = , 

Given a scale k, a (k, r, s)-modified charge assignment is a collection 

where for each y ~ A (k)_ {0, Xk }, -A~k, y,,)iS a (k, y, r)-sparse neutral ensem- 
ble and (Zy, py) is a [k, y, r+2 (c r  charge density. For  
y = O ,  xk ,  g(k,y.r,,) is a (k, y , r , s ) -spa 'rse  modified neutral ensemble and 
(p f ,  z f )  is a (k, y, s)-admissible charge. 
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A (k, r, s)-regular two-point external charges partition function is a 
partition function of the form 

Z~k'A~"~')(X) = f {exp[i~r } H 
ye AIk/ {O, xk } 

x [ i  +Z(py) cos r 

where 

F(~(k, ~,,-1; r 

Yk = O, Xk 

1 + x (1 + ~{Zy k exp[ i r  +) ]  + z L e x p [ -  iO(pL)]})] dp~(r 

(4.6) 

is a (k, r, s)-modified charge assignment; wk is the modified external charge 
density which is localized on Bk(0 ) u Bk(Xk) for k ~< N o and satisfies 

w (y) = - y ,  w (y) = 1 
y ~ Bk(O) y E Bk(x k) 

and for k > No, 
W (k)= w(k)(6, 13, ~) is the falloff factor given by 

(i) W (1)= I. 

(ii) 

w ( k  1) ~ w ( k )  

w~ is localized on Bk(0 ) with Q(w~)=0.  The function 

w(k-  1) for k = 2,..., No 

(4.7) 

(iii) W (k) : [ w ( N ~  2 for k ~> No + 1. 

In this language, Theorem 4.2 states that, for a choice of parameters 
such that we have 

1 1 
K I ( L I ,  13) ~ L]+2(~_ 1 ) and K'I(LI, 13, ~ ) < - -  (4.8) L; 

simultaneously, the two-point external charges partition function Zr A is a 
convex combination of (1, r, s)-regular external charges partition functions. 

Thus, Theorem 4.2 gives us the initial step in the inductive procedure 
for the following theorem. 
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Theorem 4.3.  Let 3 / 2 < e < 2 ,  2c~(o~-l)/(2-cQ<r<f16/2-2e, 
O<s<min{(1/cO[r_�88 lflfiq2} with 6-1=8+0(L~-2~) .  
Suppose (4.8) holds; then, if L1 is large enough,  the two-point  external 
charges part i t ion function ZCA can always be written as a convex-combina- 
tion of (k, r, s)-regular part i t ion functions for k = 1, 2,..., N. 

In view of Theorem 4.2, Theorem 4.3 is consequence of the following 
lemma. 

k e m m a  4.4 .  Let c~, r, s, L~ be as above. Let k = 1, 2 ..... N -  1. Then 
if L 1 is large enough,  any (k, r, s)-regular two-point  external charges parti- 
t ion function can be written as a convex combinat ion of (k + 1, r, s)-regular 
external charges part i t ion functions. 

Z (k'~'~) be Proof of l_emma 4.4. (Port A). Let k =  1 ..... N 0 -  1. Let CA 
given by (4.5). As in Section 3, for all y e A  ~+1~- {0, Xk+l} we define 

f ( ( k + l , y , r ,  = ~ f ( k  ) . . . .  

and for Yk + 1 = 0, xk + 1 

• ( k  + 1, yk + l , r , s  ) z U 

u G B(kk}+ l(Yk + l) 
u~- Yk 

Clearly they are ( k +  1, y, r) and 
ensembles, respectively, and 

~ / i k ,  u,r ) t.j ~ (k .  yk , r , s )  

(k + 1, Yk + 1, r, s)-sparse neutral  

Z~k~")(x) = f {expfi~b(wD] } f I  
uGA(k+I)  
u ~ O ,  Xk+l 

• [I [l+zycos (ey)] 
y ~ u(k) 

F(q(k + l .... ); d?) 

F 

Yk+l ~ 0 ,  X k +  1 l_ 

x [ I  [1 + zy cos ~b(py)] 
y ~ B(kk)+ l(Yk + l ) 

Y r  Yk 

(4.9) 

Using Lemma 2.1 for u E A (k+ 1) _ {0, xk+ 1 } and Lemma 2.1 combined with 
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Lemma 4.1 for Yk+l = 0, Xk+l, we can write this as a convex continuation 
of partition functions of the form 

f {exp[i~(Wk)]} I~ {F(MT(k +, ...... ); ~b)[1 + z* cos ~b(p*)] } 
u~A(k+ll 

u :7~ 0,  Xk + 1 

X [ I  [ m ( k ) G ( 4 k + l ,  yk+l . . . .  ); O) 
.Vk+l~O, xk+l 

x (1 + �89 +,+, exp[i~b(p+,+~)] + zy~+, exp[--i~(pyk+,) ] })] d/@(~) 

where (p*, z*) for u e A  (k+~)- {0, xk+~} is given by (3.3) and 

+ 
P yk+z=zlP~ + r2P + 

with 

P~= 
y@ B(kk) l(Yk~ l) 

Y ~ Yk 

(~r (yk+,) - -  {yk}) and for some a e ~ k +  ~ 

with 

Gy py  

+ 2 I~,l [- 2 +7 ]~21 

log 2 z2 3 

To propagate our bound on the activity, we need to apply Lemma 3.3, 
in some cases, to extract a self-energy term. As in Section 3, Lemma 3.3 
requires (3.4), which can be established applying Lemma2.1 to those p* 

+ + 
such that p* = Pv. for some y e ~k+R(~ ~(U), U r O, Xk+l. In the case p~+~ = p~,  
we apply Lemma 4.1 to obtain (3.4), but now we notice that the resulting 

+ 
density p~+, has support on B(yk+ 1, (10/3) Lk+ 1) --/}k+ l(Yk+ ~)' There- 
fore, to say p~ is locatized on Bk(yk) will mean supp py c B~(yk). 

7(k ,r , s )  It follows that ~ .A  can be written as a convex combination of terms 
of the form 

f {exp[i~b(wk)] } I~ F(~A/((k + L, r~; ~b)[1 + z, cos r 
u~A(k+i) 
uTaO, Xk+l 

Yk+l=O, Xk+l 
1 +* --* . * x (i + 5 {zy~+, exp[i~(&+~)] + z,,+, exp[ -z~(p~+, ) ]  })] du~(~) 

(4.10) 
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Marchett i  e t  al. 

{ ~ ( ( k +  l . . . .  ), ( P ~ ,  Zu)}t4EA(k+I)-- {0,Xk+l} 

--* +*  
is a ( k +  1, r)-regular charge assignment and (Pyk+~, zL+,) is a weighted 
charge localized on Be + l(Ye + 1 ) with 

and 

i2 z4  i(2)4 (4.10a) 

I 23 1 ]2y t~,.I (4.10b) 

for someae~ ,~  e+l~,~k+l)--{Ye+l}). 
We now consider several cases. 

(i) I zlt r 0. Define 

Now we distinguish each factor of 

1 + i +*  {exp[i@(we)] } W<e)(1 + ~{Zy~+~ exp[ ~b(py~+~)] + z~+~ exp[i~b(pL<)] } 

In the former we use Lemma 3.3 to replace we by we+~= w-7 and W {e) by 
W (~+ ~ (here we chose ~ = q2~/4{2). In the latter factor we notice that (4.7) 
and (4.10) give 

W (e) ~ +* ( L k  + 1~ f16r/2/4 2 4 

W(k755~+~<~\~--fk j (log 2)~ Le ""-< Le+* 

if s < (1/~)[r--�88 1) q2] and L1 sufficiently large. 
Thus, in case (i) we can replace 

1~ z +* exp[i~b(p++~)] {exp[i~b(wk)]} ~I [W(e)( 1 + ~t yk+~ 
Yk+l=O, Xk+l 

+ Zy-~, exp[--i(O(py-~)]})] (4.11) 

exp[i{(O(Wk+l)] I-[ [ W(k+ 1)(1 1 + ~ + 5{Zyk+ exp[i~b(P++~)] 
Yk~l = 0, Xk+ I 

by 

+ Zu~+, exp[ -i(~(pyk+,) ] })] (4.12) 
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where 

+ z + ( -  + +* W~k) "] 
(/937~+1 , Yk+l ) = jOyk+l, Zy~+ 1 w(k-~-~-li/ 

is a weighted charge density such that 

~+  
P,Tk+l = P~k+l ! (Wk -- Wk + i  )I Bk. i(Yk+ I) 

is localized on Bk+,(yk+ 1). Notice that Q(/5>~+,)= Q(pf~,). 
(ii) [vii =0.  In this case pf~ =p~.  Here we must consider two 

subcases: 

(iia) Q(py~)=0. We define 

+* +* 
O~(k+ 1, yk+, . . . .  ) :  ~ k +  1, yk+! . . . .  )k_) {(P.~k+l '  2.Vk+,)} 

and notice that it is a (k + 1, Yk+l, r, s)-sparse neutral ensemble by (4.10a) 
and (410.b). 

(iib) Q(p+)~aO. We define 

OLa(k+ 1, yk+ 1 ..... ) = •(k+ I,>%+I . . . .  ) 

and we use Lemma 3.3 to replace (4.11) by (4.12) where now 

z+ ( -+  +. + 

P)7;+~, L+~) = <P}~+t, zL+ ~ W(~+l)/ 

with 

Yk+l 

which is a charge density localized on B~+1(yk+ 1) with 

Z+ ~ ( g k  + l ~ (fl6/4)~2- (fl6/2)(q • 4)X Z+_* _~ g _  s 

Yk+l \ 3Lk / yk+l"~ k+1 

if s < �88 z and L1 sufficiently large. 
This completes the proof of Lemma for k ~< No - 1. 

Part B. Now, let us assume the assumptions of Lemma4.4 for 
k =  No. By our choice of x, the two modified external charges WN0 are 
localized on BN0+I(0) SO, for y E A  (N~ {0} we define 

u E B(NNo0]+ I 
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and 

~(No+ l,O,r,s) = U ~( (N 0 . . . .  ) U ~ yN0 . . . .  ) 
u ~ B(ffO0) + t (0) Y~O = O, XN 0 

u~O, xN 0 

Clearly they are, respectively, (No + l, y, r)- and (No + 1, 0, r, s)-sparse 
neutral ensembles. Z~u~ .... )(x) can be expanded as previously, except now 
y k + l = 0  is the only different point in A (N~ Thus, it can be written as 
a convex combination of terms of the form 

f {expEi~b(Wu0)] } 1--[ F(JV~(No + ~, y,~); ~)[1 + zy cos qS(py)] 
yeA(No+t) 

y ~ O  

• w(N~ 1,0, r,s); ~b)(1 + l{z~* exp[i~b(po~*)] 

+ Zo* exp[- -  iO(Po*)] }) d/~(~b) 

where 

is an (No+ 1, r)-regular charge assignment and (pf*,  z~*) is a weighted 
charge density, obtained by a simple extension of Lemma 4.1, and given by 

-b* 
p C  -= "C t p ~ W "C 2 p ~ -+''C3P+v0 

w i t h z i = 0 ,  _ + l , i = l ,  2 ,3 ,  z r (0, 0, 0), and 

P~= 
NO y E BNo + 1(0) 

y 4- O, XNo 

ce~n(No) {0, for s o m e  o-~ ~ \ ~ N 0 + l ( O  ) - -  XN0}) and 

z~*<<~ 3~zol F 3~z+ll~l 3.2 3 z_+ 
Llog2 _1 Llog2 ~ E(log2)4 xuo] 

with z~ satisfying (4.10b). 
Notice that we cannot extract any more decay from the external 

charges after the scale No. This makes the estimates on the activities easier 
than those considered in Case A, as we show below. We now have the 
following cases: 
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(i) z l r  As in Part A, we define g(N0+L,0,r,,)=~(N0+l,0,r,,1 and 
notice that 

3 . 2  3 1 
, ~< L / - ; 1  z f  ~ (log 2) s L k 

if s < �89 and L1 sufficiently large. 

(ii) "c 1 = 0. In this case we have to consider three different cases: 

(iia) z2 and "C35~0. Define g(Uo+l,o,,,s) as in case (i) and notice that 

+. 32-23 1 
z6_ ~< _ _ - -  -, -s 

(log 2) 5 L~: ~ ~< Lk+ 1 

if L1 is large enough. 

(iib) % or r 3 # 0  and Q ( p f * ) = 0 .  D e f i n e  g(No+l,O,r,s) m~No+l,O,r,s)k_) 
+* 

{(PC , z f * ) }  and notice that g(No+l,0,r,,)is an ( No + l, O, r, s )-sparse 
modified neutral ensemble. 

+* 
(iic) % or % # 0  and Q(pyNo)#O. 

We define $(N0 + ~,0,r,,) as in case (i). 
In this case we must use Lemma 3.3 judiciously to propagate the 

estimate on the activity. If we have 

B(0,  1 5L* + 1) c~ B, (xk)  = ~b (4.13) 

we apply Lemma 3.3, which gives 

+. 3-2  2 {L.k+l)-(n~/21o~ 

if s < (/7~/2) 02 and LI sufficiently large. 
If condition (4.13) is not satisfied, let B(yk,  CLk) be the maximal 

square, where p~ is localized, satisfying condition (3.4). By Lemma 3.3, 

3 �9 2 3 ~ / C \  - (~a/2)02 

This is sufficient to propagate the bound, unless (4.13) does not hold. In 
this case we skip the box Bk(yk) where the other external charge is 
localized and continue applying Lemma 3.3. This gives us 

Y k §  (l~g T)4 L* k 3 ( C +  1) Ck 

if s ~< (/76/4) 0 x and LI sufficiently large. 
This completes the proof of Part  B. 
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Part C. For k = No + 1,..., N, we simply repeat the steps of the proof 
of Part A, but the estimates go more easily. 

5. THE EXTERNAL CHARGES CORRELATION FUNCTION 

We are now ready to prove Theorems 1.1 and 1.2. Given x ~ Z  2 with 
LNo<2[xI<LNo+I,  let A = [ - R , R ]  2 with LN_I<R<~LN,  N > N o .  
We pick 3/2 < a < 2, L~ sufficiently large, and define flP.v = 
inf{ f le  R +: J~(fl) r ~b }, where 

J = ( f l ) = ( 2 ~ - l ) , f i ;  2~) (5.1) 

For fl>flP.V, we now pick r, s > 0  satisfying the assumptions of 
Theorem 4.3 and define fit as the temperature which, for a choice of 
parameters in the a priori distribution ,~o, satisfies the initial condition for 
Theorem 4.3 [see (4.8)]. 

Thus, if we define the critical temperature f i=  fi(2) by 

fl = max{fip.v., fit} 

Theorem 4.3 says that, for fl >/~, the external charges correlation function 
GA,r can be written as 

(N,r,s) , , E ~ J c ~ Z ~ , ~ , ~  (x )  
I J A , { I , X  ) = ~ ,~ 7 ( N , r , s )  

/" ~TE o ~ c'y~" A,O,y 

Z(AN'C~'~( X ) (5.2) 

where cr, d~>0 with 527 c 7 =Y'.~ d~ = 1. For each 7 e Y,  Z(f'~'])(x) is an 
(N, r, s)-regular external charges partition function and 7(N'r") is the same ~A,0,~, 
expression with ~ = 0. 

Our choice for the denominators in (5.2) is important to the cancella- 
tions we will perform between the numerators and denominators. 

Let us first point out the properties of Z(fb~ ") which differ from those 
of Z (N'''') with ~ r 0. Clearly: A,~,y 

(i) The phase term e i~o(wk) in (4.5) is dropped. 

(ii) W(k)= 1 for k = 1, 2,..., N. 

(iii) And, the most important, for k =  1 ..... N, 

P f - - P y k - P y ~  and z §  Yk Yk ~- ZYk 
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Therefore 

1 1 + ' + + ~{zy k exp[t~b(py~)] +zyk e x p [ -  i~b(p~Tk)] } = 1 + z ~  cos ~(Pyk) 

where (Pyk, z),~.) is a (k, s)-admissible weighted charge density, and the func- 
tional G(g(N,O,~,,); q~) is real and strictly positive. 

Since the characteristic function of dg~(~b) is a strictly positive func- 
tion, it follows from (iii) that 7 (u'r',) ~A,O, 7 >~ 1 > 0  and (5.2) is well defined. 

We now notice that the number of modified weighted charge densities 
(p-+, z -+) in E(N,O,~,,1 is at most 2N (actually it is at most N+No). We also 
notice the simple bound 

- s  1 + 1 - c L  k <~ll +5{xyk exp[i~b(pf )]+ zy kexp[- icb(py~)]} I ~ < I + c L ; "  

(5.3) 

with c = 2 3 .  3/(log 2) 4, which is valid without the modulus when ~ = 0. 
From (4.5), properties (i)-(iii) above, and (5.3) we have 

N 

tz!~'~?;)(x)l ~ H (I +~L;~)  ~ w(~) f d~(~) -~ " a ( ~ ( N , O , r , s ) ,  %) 
k = l  

and 

N 

> H 
k = l  

{, 

- -  G ( o ~ ( N , O , r , s ) ,  (~) (1 c L ; ' )  ~ ] du~(O)  -~' " 

~ y  
where g(N,O,r,s) is the (N, 0, r, s)-sparse neutral ensemble defined by induc- 
tion: 

(i) F o r k = l ,  6a.y~ .... )=~b. 

(ii) F o r k = 2 , 3  .... No a n d k = N o + 2 , . . . , N  

(k, yk,r ,  s) = U 
u~B(k+l ) (yk )  

u ~  yk -1  

and (iii) 

U . . . .  , U 4 N o , , , o  . . . .  ) 
u �9 B(ffoo) + 1(0) YN o = O, XN o 

y # O, XNo 

where each JV~(~_ a .... ) i s  a ( k - l ,  u, r)-sparse neutral ensemble as intro- 
duced in Section 3. 

822/60/1-2-11 
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Thus, 

Z(AN~'~') (X) Iz (N,r , s )  N O (  Lk  ~ ) - 2fl~r/2/5 \ / ( LNo ~ 2f16r/2/5 
<C H <~C,3No-ILlt <Clxl ,o,2 

A,0,? k=2 

This completes the proof of Theorem 1.1. 

Now let us restrict our attention to the hard-core and standard gases. 
In these models the initial condition for Theorem 4.3 can be satisfied by 
simply taking the activity z sufficiently small and this implies f i=  fle.v.. 
From (5.1) the critical temperature is given by 

4e 12 

6 ( 2 -  ~) 8 

Theorem 1.2 follows if we choose the best estimate for 6 ~= 
2~ + O(L~ 2~) and notice that ~ can be chosen arbitrarily close to 3/2 and 
L~ can be chosen arbitrarily large, taking z arbitrarily small. 

A P P E N D I X  A. 

We have 
N 

H (l+ziCOSr E 
iGI n=l 

Using 

cos  c o s  G " "  c o s  r176 = 

(A.1) can be written as 

, §  z H 
aefr ie l  

P R O O F  OF L E M M A  2.1 

zi,...zi cosOil...cosr (A.1) 
�9 n 

i1~i2r --" r 

1 

cos r = 1 + ~ 1-] ~k2blj Z a COS ~(0") 
cr~@(I) i~I 

(A.2) 

where ~(1) = {~: I--* {0, + 1, - 1 }, cr not identically zero}, 

i~I 

iEl 

In the expression (A.2) we multiplied and divided each term in the 
sum by [Ii~1b) ~1, with bz to be fixed below. 
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Hence, 

I~ ( l + z i c o s r  ~ G[ l+z~cos@(a) ]  
i c l  a ~ ( l )  

since c~ = He (1/2bz) '~'l satisfies 

% =  1 
a ~ ( l )  

The above equations determine uniquely the constant bi, i.e., 

o r  

1 n 1 N 

n = l  

l n 2 = N l n ( l + ~ l )  ~<b-~N 

which proves the lemma. 

(A.3) 

APPENDIX  B. PROOF OF L E M M A 3 . 3  

Suppose for simplicity that pu*=p*  is localized on Bk(0). By 
hypothesis, supp p* c~ B(0, 1 ~Lk+l)=r  for all u e A  ~+I) u # O ,  and we pick 
nk < D 4 n k + l - -  1. 

For each density PyeY(k+i,O.r) let B,,,(y) be the box where py is 
localized, with 

ny = inf{n e N: supp py c B,,(y) } 

and let us introduce the scarce set KD(O ) c Bk+ 1(0) given by 

KD(O) = 
y ~ B k + I ( O ) :  

Py E J~(k + l,O,r) 

Now we define the equivalence 

,r ! y ~ y '  Bny(y ) c~ B,,y,(y ) # r 

and let Y1 ... . .  Yp denote the distinct equivalence class. 
Clearly, KD(0) can be written as the union of the B(Y,) ,  t =  1 ..... P, 

where 

B(Y,)= U 
Y~ Yt 
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We have (see the definition of sparse ensembles Y )  

B( Y) c B.~ + ~ ( f ) - B( Y) 

for some )7 such that p e  Y and ny= max{ny}y~ r. 
Now we pick a real-valued function on Z 2 given by 

f ~ ( j )  = 

log L---~ for ILJll ~< 

l~  IlJl---~ for ~< IlJll ~ 3 

3 D 
0 for IlJll > - -  

2 

(B.1) 

(B.2) 

and define the function 

t p 
f k ( j ) =  f k (J )  if Jr t=lU B ( Y t )  

[.fk(f',) if j ~ B ( Y t )  , t=  1,..., P 

In order to prove identity (3.5), we perform the following complex 
shift in the r variable: 

r ~ O' = 0 + ifltcqfk 

where ~: is a parameter to be chosen later and q = Q(p~). 
Clearly [see (3.4)] 

r  = r  for u # 0  

and because of the neutrality of all p ~ Y((~+ 1 .... ) and definition of fk, 

�9 t F - F(X((k+I .... ) ,r  ) =  (~((k+, .... );~b), Vu~A(k+l) 

Thus, the only terms affected by the shift are 

eir = eir e--flKqfk(Pg) 

, .Lk/  

and 

dp~(r = d#~(r ) e'~Ur ~q2(A' - z l f k ) / 2  
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Define P~o = P~ + ~cq(dfk); Lemma 3.3 follows if 

3z) 
0 ~ (frk, --Afk ) <~ b log L~ 

for some constant 6 < ~.  
We notice that 

with 

(B.3) 

and use the bound 

2 
Ifk(j+ 1)--fk(j)l ~ 3 7 T  for j eA , (O)  

Thus (for details see ref. 10) 

o ( 4 ) 2  
E~< ~ ~ 4.33(% +I) 

n = n k + l  t : ~ t ~ A  n 

To perform the summation in t, we divide {B(Y,)} into subsets according 
to its scale. Now we notice that (see definition of JI/'): 

N (m) -= card{ Y,; B(Y,)  ~ A ,  and m < ny, < m + 1 } <~ 32n-::m 

P 

E =  ~, ~ [ f k ( j ) - - f k ( j , ) ]  2 
t - -1  j~OB(Y t )  

where by 0B we mean the boundary of the box B. 
The first term of the rhs of (B.3) is given by 

=4  Z 2J In j 1 - -  ~< ln  

At this point we could replace 8 by 2~ if we had used the usual 
Euclidean norm instead the sup norm in (B.2). 

We estimate the second term as follow: Let us decompose 
B3D(0)\Bk(0 ) in mutually disjoint, concentric regions: 

D 

B3D(0)\B (0)= 0 a3n(0)\a3 -l(0) 
n = n k + l  

D 

=- U A.(O) 
n - - n k + l  
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Therefore 

E~<16.3 s ~ 3(3-2~)m=16"35(D-nk-1)CL~ -2~ 
n = n k + l  m=nl  

with C = C(L1, c~) ~ 1 as Lj ~ ~ .  
We conclude Lemma 3.3 by taking 6 1= 8 + 16.35CL~ -2~. 

Note .  After the completion of this work we received ref. 11, which is 
also concerned with the two-dimensional lattice Coulomb gases and the 
Kosterlitz-Thouless transition. 
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